Oscillons in the planar Ginzburg–Landau equation with 2:1 forcing

نویسندگان

  • Kelly McQuighan
  • Björn Sandstede
چکیده

Abstract Oscillons are spatially localized, time-periodic structures that have been observed in many natural processes, often under temporally periodic forcing. Near Hopf bifurcations, such systems can be formally reduced to forced complex Ginzburg–Landau equations, with oscillons then corresponding to stationary localized patterns. In this manuscript, stationary localized structures of the planar 2:1 forced Ginzburg–Landau equation are investigated analytically and numerically. The existence of these patterns is proved in regions where two spatial eigenvalues collide at zero. A numerical study complements these analytical results away from onset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Reciprocal oscillons and nonmonotonic fronts in forced nonequilibrium systems.

The formation of oscillons in a synchronously oscillating background is studied in the context of both damped and self-exciting oscillatory media. Using the forced complex Ginzburg-Landau equation we show that such states bifurcate from finite amplitude homogenous states near the 2:1 resonance boundary. In each case we identify a region in parameter space containing a finite multiplicity of coe...

متن کامل

Classification of Spatially Localized Oscillations in Periodically Forced Dissipative Systems

Formation of spatially localized oscillations in parametrically driven systems is studied, focusing on the dominant 2:1 resonance tongue. Both damped and self-excited oscillatory media are considered. Near the primary subharmonic instability such systems are described by the forced complex Ginzburg–Landau equation. The technique of spatial dynamics is used to identify three basic types of coher...

متن کامل

Superlattice Patterns in the Complex Ginzburg-Landau Equation with Multiresonant Forcing

Motivated by the rich variety of complex patterns observed on the surface of fluid layers that are vibrated at multiple frequencies, we investigate the effect of such resonant forcing on systems undergoing a Hopf bifurcation to spatially homogeneous oscillations. We use an extension of the complex Ginzburg-Landau equation that systematically captures weak forcing functions with a spectrum consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014